

Ф – Аннотация рабочей программы дисциплины

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

«Имитационное моделирование»

по направлению 09.03.02 Информационные системы и технологии

(бакалавриат)

профиль «Разработка информационных систем»

1. Цели и задачи освоения дисциплины

Дисциплина «Имитационное моделирование» знакомит студентов с фундаментальными методами математического и имитационного моделирования и непосредственно связана с основными математическими дисциплинами. Предметом изучения являются методы и принципы построения математических и имитационных моделей систем и процессов. Дисциплина закладывает фундаментальные знания, необходимые для изучения всех основных курсов, посвященных математическому, компьютерному и имитационному моделированию реальных объектов и процессов.

Цели освоения дисциплины:

• изучение основных понятий и методов построения и исследования имитационных моделей, систем и языков моделирования.

Задачи освоения дисциплины:

- выработка у студентов навыков использования систем компьютерного и имитационного моделирования;
- обоснованного выбора методов и средств имитационного моделирования систем и процессов;
- понимания процессов математического и имитационного моделирования;
- освоения методов построения математических, компьютерных и имитационных моделей систем и процессов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина относится к базовой части цикла Б1 (Б1.В.ОД.5) основной образовательной программы и читается в 5-м семестре студентам направления «Информационные системы и технологии» очной формы обучения и в 4-м семестре студентам заочной формы обучения.

Для ее успешного изучения необходимы знания и умения, навыки и компетенции ОПК-1, ОПК-8, ПК-2, частично или полностью приобретенные в результате освоения учебных дисциплин: «Физика», «Математический анализ», «Алгебра и геометрия», «Дискретная математика», «Электроника», «Дифференциальные уравнения», «Робототехнические системы».

Для освоения дисциплины студент должен иметь следующие «входные» знания, умения, навыки и компетенции: понятие дифференциального уравнения, методы решения дифференциальных уравнений, понятия алгоритма и программы, понятие случайного числа, методы линейной алгебры и вычислительной математики, математического анализа, теории вероятностей.

Сопутствующие (параллельно изучаемые) дисциплины: «Теория систем и системный анализ», «Основы информационных систем», «Численные методы», «Ознакомительная практика», «Теория информации», «Теория вероятностей и математическая статистика», «Компьютерная геометрия и графика», «Программирование на языке Java», «Разработка мобильных приложений».

Результаты освоения дисциплины будут необходимы для дальнейшего процесса обучения в рамках поэтапного формирования компетенций ОПК-1, ОПК-8, ПК-2 при

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф – Аннотация рабочей программы дисциплины		

изучении следующих специальных дисциплин: «Методы и средства проектирования информационных систем и технологий», «Направляющие среды систем передачи информации», «Функциональное программирование», а также при прохождении преддипломной практики, при подготовке к сдаче и сдаче государственного экзамена, при выполнении и защите выпускной квалификационной работы.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕНЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Процесс изучения дисциплины «Имитационное моделирование» направлен на формирование следующих компетенций.

K	(модулю), соотнесенных с индикаторами достижения компетенций Внать:
ОПК-1 – способен 3	Знать:
	Shulb.
применять	методы математического анализа и моделирования,
1	георетического и экспериментального исследования.
общеинженерные знания, У	Уметь:
методы математического п	применять естественнонаучные и общеинженерные знания,
анализа и моделирования, м	методы математического анализа и моделирования,
теоретического и т	георетического и экспериментального исследования в
экспериментального п	профессиональной деятельности.
исследования в Е	Владеть:
профессиональной н	навыками теоретического и экспериментального
деятельности.	исследования в профессиональной деятельности.
ОПК-8 – способен 3	Внать:
применять математические С	Основы построения математических и имитационных
модели, методы и средства м	моделей, методы и средства проектирования
проектирования	информационных и автоматизированных систем.
информационных и У	Уметь:
автоматизированных	применять математические модели, методы и средства
систем.	проектирования информационных и автоматизированных
c	систем.
F	Владеть:
H	навыками проектирования информационных и
a	автоматизированных систем.
ПК-2 – способен проводить 3	Знать:
	способы моделирования процессов и систем и обоснования
	правильности выбранной модели.
правильность выбранной \	Уметь:
	проводить моделирование процессов и систем и
	обосновывать правильность выбранной модели.
E	Владеть:
	навыками моделирования процессов и систем и обоснования
п	правильности выбранной модели.

2. Общая трудоемкость дисциплины

Общая трудоемкость дисциплины составляет 4 зачетных единицы (144 часа).

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф – Аннотация рабочей программы дисциплины		

3. Образовательные технологии

В ходе изучения дисциплины используются традиционные методы и формы обучения (лекции, практические занятия, лабораторные занятия, самостоятельная работа).

При организации самостоятельной работы используются следующие образовательные технологии: самостоятельная работа, сопряженная с основными аудиторными занятиями (проработка учебного материала с использованием ресурсов учебно-методического и информационного обеспечения дисциплины); подготовка к практическим занятиям; выполнение лабораторных работ; самостоятельная работа под контролем преподавателя в форме плановых консультаций, при подготовке к сдаче экзамена; внеаудиторная самостоятельная работа при выполнении студентом заданий.

4. Контроль успеваемости

Программой дисциплины предусмотрены виды текущего контроля: проверка решения практических заданий, проверка выполнения лабораторных работ.

Промежуточная аттестация проводится в форме экзамена.